Product details

By continuing to use our site you consent to the use of cookies as described in our privacy policy unless you have disabled them.
You can change your cookie settings at any time but parts of our site will not function correctly without them.
Published by: Allied Business Academies
Published in: "Academy of Information and Management Sciences Journal", 2004
Length: 12 pages

Abstract

A model-based decision support system (DSS) for operating and designing golf course systems is presented in this paper. The DSS is based on a simulation model that accurately represents the variability and interactions that impact pace of play on a golf course. Research shows the economic benefits of understanding the impact of policy and design on golf course play, specifically throughput (rounds played) and cycle time (round length). A specific policy, only allowing fast golfers to begin early in the day, was shown to improve both throughput and cycle time. A new statistic is proposed, the time handicap, which measures both a golfer and course's pace of play. The DSS model was developed using MS-Excel and @RISK, a Monte Carlo simulation package. Using MS-Excel offers a much greater degree of transferability and usability than traditional standalone discrete-event simulation software.

About

Abstract

A model-based decision support system (DSS) for operating and designing golf course systems is presented in this paper. The DSS is based on a simulation model that accurately represents the variability and interactions that impact pace of play on a golf course. Research shows the economic benefits of understanding the impact of policy and design on golf course play, specifically throughput (rounds played) and cycle time (round length). A specific policy, only allowing fast golfers to begin early in the day, was shown to improve both throughput and cycle time. A new statistic is proposed, the time handicap, which measures both a golfer and course's pace of play. The DSS model was developed using MS-Excel and @RISK, a Monte Carlo simulation package. Using MS-Excel offers a much greater degree of transferability and usability than traditional standalone discrete-event simulation software.

Related