The independent home of the case method - and a charity. Make an impact and  donate

Product details

Product details
By continuing to use our site you consent to the use of cookies as described in our privacy policy unless you have disabled them.
You can change your cookie settings at any time but parts of our site will not function correctly without them.

Abstract

Netflix Top Picks, Amazon recommendations, the iTunes Genius button. They all have one thing in common: they are driven by clever algorithms that use a technique known as collaborative filtering. Often used in machine learning operations, collaborative filtering is the process by which a firm like Netflix generates predictions about a single user's preferences using data taken from a large number of users. This technical note offers an overview of three of the main collaborative filtering methods: slope one, a purely predictive nonparametric model; ordinal logit, a parametric regression model; and alternative least squares, a matrix factorization technique.

About

Abstract

Netflix Top Picks, Amazon recommendations, the iTunes Genius button. They all have one thing in common: they are driven by clever algorithms that use a technique known as collaborative filtering. Often used in machine learning operations, collaborative filtering is the process by which a firm like Netflix generates predictions about a single user's preferences using data taken from a large number of users. This technical note offers an overview of three of the main collaborative filtering methods: slope one, a purely predictive nonparametric model; ordinal logit, a parametric regression model; and alternative least squares, a matrix factorization technique.

Related